# 1,3-Dipolar Character of Six-membered Aromatic Rings. Part XI. ${ }^{1}$ 1-Oxido-3-phenylphthalazinium 

By Nicholas Dennis, Alan R. Katritzky,* and Muthyala Ramaiah, School of Chemical Sciences, University of East Anglia, Norwich NR4 7TJ

1-Oxido-3-phenylphthalazinium with styrene and with diphenylacetylene gives the expected cycloadducts. However, reactions with dimethyl acetylenedicarboxylate and with phenylacetylene gave in each case three isomeric products, the structures of which have been elucidated. Mechanisms are suggested for their formation and interconversion.

Diaza-heteroaromatic betaines such as 2-methyl-4oxidocinnolinium (1) ${ }^{1-3}$ and 3 -methyl-1-oxidophthalazinium (2) ${ }^{1}$ show 1,3 -dipolar character but give cycloadducts preferentially with acetylenic dipolarophiles. 3-Aryl-l-oxidophthalazinium betaines (arylphthalazin4 -ones ${ }^{4}$ ) were known before 1940 : we now report the first 1,3 -dipolar cycloadditions of 1 -oxido- 3 -phenylphthalazinium (3), which disclose complex behaviour different from that previously encountered with heteroaromatic betaines.

(1)

(2) $R=M e$
(3) $R=P h$

3-Aryl-1-oxidophthalazinium betaines were first prepared in low yields by Rowe ${ }^{4}$ and his co-workers by coupling 2-hydroxynaphthalene-1-sulphonic acid with diazotised anilines followed by treatment with acid. We made 1-oxido-3-phenylphthalazinium ( $70 \%$ overall) by a modification of the method of Lund. ${ }^{5,6}$ Reduction of $N$-anilinophthalimide ${ }^{5}$ with sodium borohydride in tetrahydrofuran yielded $N$-anilino-3-hydroxyphthalimidine, which was thermally rearranged to the betaine (3).

Cycloadditions with Olefins.-3-Methyl-1-oxidophthalazinium and 2 -methyl-4-oxidocinnolinium are unreactive towards olefins. ${ }^{1}$ However, like 1-aryl-3oxidopyridiniums, ${ }^{7}$ the betaine (3) reacted with styrene at $120{ }^{\circ} \mathrm{C}$ to yield the cycloadduct (4) in $65 \%$ yield. The i.r. spectrum showed a conjugated carbonyl group $\left[v(\mathrm{C}=\mathrm{O}) 1700 \mathrm{~cm}^{-1}\right]$ and the mass spectrum had a parent peak at $m / e 326$. The n.m.r. spectrum $(220 \mathrm{MHz})$ showed a low-field doublet of doublets ( $J_{4,9-\text { exo }} 6$, $J_{4,9 \text {-endo }} 1 \mathrm{~Hz}$ ) at $\delta 5.10$ assignable to the bridgehead proton, H-4. A second doublet of doublets ( $J_{9-\text { endo }, 10-e x o}$ 5 , $J_{9-\text { exo. } 10 \text {-exo }} 8.5 \mathrm{~Hz}$ ) was assigned to $\mathrm{H}-10$-exo and the two-proton multiplet ( $J_{9-e x o, 9-\text { endo }} 12.5 \mathrm{~Hz}$ ) at $\delta 2.84$ to $\mathrm{H}-9-\mathrm{endo}$ and $\mathrm{H}-9-$ exo. All assignments were confirmed by double irradiation experiments: e.g. on
${ }^{1}$ Part X, N. Dennis, A. R. Katritzky, and M. Ramaial, J.C.S. Perkin I, 1975, 1506.
${ }^{2}$ D. E. Ames and B. Novitt, J. Chem. Soc. (C), 1969, 2355.
${ }^{3}$ E. Lunt and T. L. Threlfall, Chem. and Ind., 1964, 1805.
${ }^{4}$ F. M. Rowe, E. Levin, A. C. Burns, J. S. H. Davies, and W. Tepper, J. Chem. Soc., 1926, 690; F. M. Rowe, D. A. W. Adams, A. T. Peters, and A. E. Gillam, J. Chem. Soc., 1937, 90.
irradiation at the frequency of $\mathrm{H}-4$, the $\mathrm{H}-9$-multiplet was simplified while the H -10-exo signal was unaffected. The betaine (3) was unreactive towards $N$-phenylmaleimide, dimethyl fumarate, tetracyanoethylene, and phenyl isocyanate. Acrylonitrile did react, but formed unstable cycloadducts, which we did not characterise.

Cycloadditions with Acetylenes.-The betaine (3) reacted with diphenylacetylene in $o$-dichlorobenzene to give the yellow cycloadduct (5), $v(\mathrm{C}=0) 1715 \mathrm{~cm}^{-1}$, $m / e 400$, one-proton n.m.r. singlet at $\delta 5.72$ for H-4.

1-Oxido-3-phenylphthalazinium (3) reacted with dimethyl acetylenedicarboxylate in refluxing xylene to produce the expected cycloadduct (8), m.p. 176$177{ }^{\circ} \mathrm{C}, v(\mathrm{C}=\mathrm{O}) 1715 \mathrm{~cm}^{-1}, m / e 364$. The n.m.r. spectrum showed a one-proton singlet at $\delta 6.26$ for $\mathrm{H}-4$, and two three-proton singlets at $\delta 3.80$ and 3.84 for the two ester methyl groups. However, use of chloroform as solvent for the cycloaddition gave a crystalline isomer ( $85 \%$ ), m.p. $150{ }^{\circ} \mathrm{C}, m / e 364$. Structure (9) for this isomer is supported by the i.r. absorptions for $\alpha \beta$-unsaturated

(4)

(5) $R^{1}=R^{2}=P h$
(6) $R^{1}=H, R^{2}=P h$
(7) $R^{1}=P h, R^{2}=H$
(8) $R^{1}=R^{2}=\mathrm{CO}_{2} \mathrm{Me}$
ester groups $\left[\nu(\mathrm{C}=\mathrm{O}) 1730 \mathrm{~cm}^{-1}\right]$ and amide $[\nu(\mathrm{C}=0)$ $1650 \mathrm{~cm}^{-1}$ ]. The n.m.r. spectrum showed a low field one-proton singlet at $\delta 8.24$ assigned to the single vinyl proton, H-6, and two three-proton singlets at $\delta 3.73$ and 3.82 assigned to the two ester methyl groups.

On heating in the absence of solvent, both the isomeric cycloadducts (8) and (9) rearranged to a third isomer (10), m.p. $190^{\circ} \mathrm{C}, m / e 364$. The i.r. spectrum showed three carbonyl groups: saturated ester ( $1750 \mathrm{~cm}^{-1}$ ), unsaturated ester ( $1735 \mathrm{~cm}^{-1}$ ), and ketone ( $1705 \mathrm{~cm}^{-1}$ ). A one-proton n.m.r. singlet at $\delta 6.28$ was assigned to the bridgehead proton, $\mathrm{H}-8 \mathrm{~b}$, and two three-proton singlets at $\delta 3.84$ and 3.90 were assigned to the two ester methyl
${ }^{5}$ H. Lund, Tetrahedron Letters, 1965, 3973.
${ }^{6}$ H. Lund, Coll. Czech. Chem. Comm., 1965, 30, 4237.
7 N. Dennis, B. Ibrahim, and A. R. Katritzky, J.C.S. Chem. Comm., 1974, 500.
groups. The upfield shift of the bridgehead proton ( $\mathrm{H}-8 \mathrm{~b}$ ) signal is the result of absence of conjugation with the amide nitrogen atom.

(9)

(10)

(11)

Catalytic hydrogenation of the isomer (10) over pal-ladium-carbon ( $10 \%$ ) yielded the dihydro-compound (11), which, in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\mathrm{D}_{2} \mathrm{O}$, showed two one-proton

(12) $R=H$
(13) $R=B r$

(15)

(14)

(16)
n.m.r. singlets at $\delta 5.86$ and 6.32 for $\mathrm{H}-3$ and -8 b , and two three-proton singlets at $\delta 3.70$ and 3.68 for the two ester methyl groups.
The betaine (3) reacted with phenylacetylene in refluxing xylene to give two isomeric products. One was the normal cycloadduct (6), m.p. $220^{\circ} \mathrm{C}, \nu(\mathrm{C}=\mathrm{O})$ $1710 \mathrm{~cm}^{-1}$, showing a one-proton doublet at $\delta 6.02$ $(J 9 \mathrm{~Hz})$ for the vinyl proton, $\mathrm{H}-9$, and a second oneproton doublet at $\delta 4.74(J 9 \mathrm{~Hz})$ for the bridgehead proton, H-4. The second isomer (12), m.p. $145-146{ }^{\circ} \mathrm{C}$, was an amide, $v(\mathrm{C}=0), 1650 \mathrm{~cm}^{-1}, m / e$ 324. The following evidence supported structure (12). A oneproton doublet at $\delta 6.60\left[J 11 \mathrm{~Hz}\right.$ (cf. $J_{c i s} 10 \mathrm{~Hz}$; ref. 8), A of $A B$ spectrum] was assigned to the vinyl proton, $\mathrm{H}-5$. The signal due to the vinyl proton, $\mathrm{H}-6$, originally buried under the aromatic envelope at $\delta 7.80-7.00$, became visible as a doublet ( $J 11 \mathrm{~Hz}, \mathrm{~B}$ of AB spectrum) on addition of the lanthanide shift reagent $\operatorname{Pr}(\mathrm{fod})_{3}$.

[^0]Since the shift reagent complexes with the oxygen atom, the peri-proton, $\mathrm{H}-10$, and the ortho-phenyl protons also suffer lanthanide-induced shifts. Structure (12) was confirmed by $X$-ray analysis. ${ }^{9}$ Sublimation of (12) yielded crystalline (14), m.p. $228{ }^{\circ} \mathrm{C}$, the structure of which was elucidated by $X$-ray crystallography. ${ }^{10}$

The betaine (3) reacted with phenylacetylene in $o$-dichlorobenzene to give the cycloadduct (6) as the major component along with two minor products but without formation of the adduct (12). One of the minor products was identified as the regioisomer (7), m.p. $195-196{ }^{\circ} \mathrm{C}$, on the evidence of the n.m.r. spectrum which had two one-proton singlets at $\delta 6.75$ and 5.70 for the vinyl proton, $\mathrm{H}-10$, and the bridgehead proton, H-4, respectively.

Bromine in chloroform converted the adduct (12) into the monobromo-derivative (13), with evolution of hydrogen bromide. The amide group $[v(\mathrm{C}=\mathrm{O}) 1645$ $\left.\mathrm{cm}^{-1}\right]$ is retained in the product. Initial addition of one bromine molecule to the conjugated imine of (12) is apparently followed by displacement of HBr from the dibromo-intermediate (15).

Catalytic hydrogenation of the cycloadduct (12) over palladium-carbon ( $\mathbf{1 0 \%} \%$ ) gave the benzodiazocine ( 16 ), which showed amide $v(\mathrm{C}=0) 1650 \mathrm{~cm}^{-1}$ and amine $v(\mathrm{~N}-\mathrm{H}) 3350 \mathrm{~cm}^{-1}$. The n.m.r. spectrum showed an exchangeable ( $\mathrm{D}_{2} \mathrm{O}$ ) NH singlet at $\delta 4.35$, a quartet at $\delta 4.05$ for H-4, a two-proton multiplet at $\delta 3.10$ for the 6 -protons and a two-proton complex multiplet at $\delta 2.10$ for the 5 -protons. These assignments were confirmed by double-resonance experiments.

(17)

(20)

Mechanisms of Formation of Isomeric Cycloadducts.The conventional cycloadducts (4)-(8) are derived by

[^1]cycloadditions of the dipolarophiles with the dipolar betaine (3). Lund ${ }^{5}$ unambiguously established the betaine structure (3) by two-electron reduction to 3,4-dihydro-3-phenylphthalazin- $1(2 \mathrm{H})$-one. The mechanisms of these rearrangements are not yet clear. The diazocines (9) and (12) could be derived from the normal cycloadducts (8) and (6) by electrocyclic reactions of the type (17); this is similar to the mechanism postulated by Padwa et al..$^{11}$ for the conversion of the adduct (18) into the azocine (19). The formation of the abnormal tricyclic derivatives (10) and (14) could be explained by 1,3 -acyl shifts in (8) and (6), respectively. However, another possibility is that adducts of the type (8)-(10) are interconverted via the species (20), which by a 1,2 shift of the aryl group can yield (8), by electrocyclic ring opening can yield (9), and by 1,3 -shift of the acyl group can give (10).

The foregoing work indicates the complexities of cycloaddition to diazinium betaines and provides evidence for subtle valence-bond isomerism processes in these compounds.

## EXPERIMENTAL

M.p.s. were determined with a Reichert apparatus. Spectra were recorded with a Perkin-Elmer 257 grating i.r. spectrophotometer, a Hitachi-Perkin-Elmer RMU-6E mass spectrometer, a Unicam SP 800A u.v. spectrophotometer, and a Varian HA-100 n.m.r. spectrometer. Compounds were purified until they were observed as single spots on t.l.c. (Kieselgel PF 254; chloroform as eluant).

N -A nilinophthalimide.-Phenylhydrazine ( $2.10 \mathrm{~g}, 0.02$ $\mathrm{mol})$ in $\mathrm{CHCl}_{3}(10 \mathrm{ml})$ was added to phthalic anhydride $(2.96 \mathrm{~g}, 0.02 \mathrm{~mol})$ in $\mathrm{CHCl}_{3}(100 \mathrm{ml})$ and the mixture was kept at $20^{\circ} \mathrm{C}$ for 3 h . The precipitated anilinophthalamic acid was filtered off, air dried, and heated at $160^{\circ} \mathrm{C}$ in an oil-bath for 10 min with occasional stirring to give N anilinophthalimide ( $3.5 \mathrm{~g}, 77 \%$ ) as yellow needles, m.p. $180^{\circ} \mathrm{C}$ (from EtOH) (lit., ${ }^{11} 156-185{ }^{\circ} \mathrm{C}$ ) (Found: C, 70.8; $\mathrm{H}, 4.5 ; \mathrm{N}, 11.6$. Calc. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$ : C, $70.6 ; \mathrm{H}, 4.2$; $\mathrm{N}, 11.8 \%$ ) ; $\nu_{\text {max }}$ (Nujol) 1785 and $1730 \mathrm{~cm}^{-1}$.

1-Oxido-3-phenylphthalazinium (3). $-\mathrm{NaBH}_{4}(0.1 \mathrm{~g}, 0.02$ $\mathrm{mol})$ in $\left[\mathrm{CH}_{2}\right]_{4} \mathrm{O}(3 \mathrm{ml})$ was added quickly and with vigorous stirring to $N$-anilinophthalimide ( $0.238 \mathrm{~g}, 0.001 \mathrm{~mol}$ ) in $\left[\mathrm{CH}_{2}\right]_{4} \mathrm{O}(8 \mathrm{ml})$ and distilled water $(0.5 \mathrm{ml})$ at $20^{\circ} \mathrm{C}$. After 2 h , the excess of $\mathrm{NaBH}_{4}$ was decomposed with a large excess of $\mathrm{Me}_{2} \mathrm{CO}$. The solution was stirred for 0.5 h more, filtered, and evaporated under vacuum. The oily residue was heated at $120-130^{\circ} \mathrm{C}$ for 15 min to give a solid which was dissolved in hot EtOH ( 5 ml ). Ether ( 50 ml ) was then added to give l-oxido-3-phenylphthalazinium (3) ( 0.172 g , $75 \%$ ) as needles, m.p. $204-205{ }^{\circ} \mathrm{C}$ (from EtOH) (lit., ${ }^{5}$ $210^{\circ} \mathrm{C}$ ) (Found: C, 76.3; H,4.7; N, 12.5. Calc. for $\mathrm{C}_{14} \mathrm{H}_{10}-$ $\mathrm{N}_{2} \mathrm{O}: \mathrm{C}, 75.7 ; \mathrm{H}, 4.5 ; \mathrm{N}, 12.6 \%$ ) ; $\nu_{\max .}$ (Nujol) 1600 $(\mathrm{C}=\mathrm{C})$ and $1565(\stackrel{+}{\mathrm{C}}-\overline{\mathrm{O}}) \mathrm{cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right) 7.40-8.0(8 \mathrm{H}, \mathrm{m}$, aromatic), $8.28(1 \mathrm{H}, \mathrm{m}$, peri -H$)$, and $8.60(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4)$; $m / e 222$.
3,4-Dihydro-3,10-endo-diphenyl-2,4-ethanophthalazin-1(2H)one (4).-1-Oxido-3-phenylphthalazinium ( $0.11 \mathrm{~g}, 5 \times 10^{-4}$ mol ), styrene ( 10 ml ), and hydroquinone ( $3-4$ crystals) were heated in an oil-bath at $120^{\circ} \mathrm{C}$ for 5 h . Unchanged styrene was removed under vacuum. The solid residue
crystallised from EtOH to give the adduct (4) ( $0.140 \mathrm{~g}, 65 \%$ ) as needles, m.p. $154{ }^{\circ} \mathrm{C}$ (Found: C, 80.9; H, 5.8; N, 8.3. $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ requires $\left.\mathrm{C}, 81.0 ; \mathrm{H}, 5.6 ; \mathrm{N}, 8.6 \%\right)$; ${ }^{\text {max. }}$. (Nujol) 1700 ( $\alpha \beta$-unsaturated ketone $\mathrm{C}=\mathrm{O}$ ), $1600(\mathrm{C}=\mathrm{C})$, $1490,1350,1260,1100$, and $1065 \mathrm{~cm}^{-1}$; $\delta\left(\mathrm{CDCl}_{3}\right) 7.3$ $\left(4 \mathrm{H}, \mathrm{m}\right.$, aromatic), $5.10\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{H}-4, J_{4,9 \text {-endo }} 1, J_{4,9-e x o}\right.$ $6 \mathrm{~Hz}), 4.70\left(1 \mathrm{H}\right.$, dd, H-10-exo, $J_{9-\text { endo } 10 \text {-exo }} 5, J_{9-e x o, 10 \text { exo }}$ $8.5 \mathrm{~Hz})$, and $2.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9\right.$-endo and H-9-exo, $J_{9-\text { endo, } 9 \text {-exo }}$ 12.5 Hz ) ; $m / e 326$.

3,4-Dihydro-3,9,10-triphenyl-2,4-ethenophthalazin-1 $(2 \mathrm{H})$ one (5). -The betaine (3) ( $0.111 \mathrm{~g}, 5 \times 10^{-4} \mathrm{~mol}$ ), diphenylacetylene $(0.134 \mathrm{~g}, 0.0015 \mathrm{~mol})$, and $o$-dichlorobenzene ( 8 ml ) were heated under reflux for 18 h . The solvent was removed under vacuum and the residue crystallised from light petroleum (b.p. $40-60^{\circ} \mathrm{C}$ ) to give the adduct (5) ( 0.172 g , $86 \%$ ), as yellow needles, m.p. $214^{\circ} \mathrm{C}$ (Found: C, 84.8; H, 5.3; N, 5.6. $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$ requires C, 84.0; H, $5.0 ; \mathrm{N}$, $7.0 \%$ ); $\nu_{\text {max. }}$ (Nujol) $1715 \quad(\mathrm{C}=\mathrm{O}), 1600 \quad$ (C=C), 1530 , $1500,1270,1290,1140$, and $830 \mathrm{~cm}^{-1}$; $\lambda_{\max }$ ( EtOH ) $350\left(\varepsilon 9 \times 10^{3}\right), 297\left(12 \times 10^{3}\right), 280\left(12.8 \times 10^{3}\right), 250(20 \times$ $\left.10^{3}\right)$, and $207 \mathrm{~nm}\left(37 \times 10^{3}\right) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.95-7.2(19 \mathrm{H}$, m , aromatic) and $5.72(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4) ; m / e 400$.

3,4,5,6-Tetrahydro-2,4-diphenyl-2,3-benzodiazocin-1 $(2 \mathrm{H})$ one (16).—Compound (12) ( $0.160 \mathrm{mg}, 5 \times 10^{-4} \mathrm{~mol}$ ) in ethyl acetate ( 50 ml ) was hydrogenated over $\mathrm{Pd}-\mathrm{C}(10 \%)$ ( 50 mg ) at atmospheric pressure until uptake ceased. The solvent was removed under vacuum and the product was separated by preparative t.l.c. (silica gel; $\mathrm{CHCl}_{3}$ ). Elution with chloroform gave a major product (16) ( $130 \mathrm{mg}, 80 \%$ ) as needles, m.p. $158{ }^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 79.2 ; H, $6.0 ; \mathrm{N}, 8.5 . \quad \mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 80.5 ; \mathrm{H}, 6.1 ; \mathrm{N}$, $8.5 \%$ ) ; $\nu_{\text {max }}$ (Nujol) $3350(\mathrm{~N}-\mathrm{H})$ and $1650 \mathrm{~cm}^{-1}$ (amide $\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right) 6.82-7.72(14 \mathrm{H}, \mathrm{m}$, aromatic), $4.35(1 \mathrm{H}$, $\mathrm{s}, \mathrm{NH}), 4.05(1 \mathrm{H}, \mathrm{q}, \mathrm{H}-4), 3.10(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6)$, and 2.10 $(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5) ; \lambda_{\max }(\mathrm{EtOH}) 265\left(\varepsilon 1.6 \times 10^{4}\right)$ and 214 nm $\left(3.8 \times 10^{4}\right) ; m / e 328$. A (fast-moving) second compound ( $10 \mathrm{mg}, 12 \%$ ) was also eluted; it gave needles, m.p. 97$98{ }^{\circ} \mathrm{C}$ (from EtOH); $\nu_{\text {max }}$ (Nujol) $1650 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right)$ $7.6-7.0(\mathrm{~m}$, aromatic), $2.7(3 \mathrm{H}, \mathrm{m})$, and $1.98(1 \mathrm{H}, \mathrm{m})$; $m / e 224$.

Reaction of 1-Oxido-3-phenylphthalazinium with Phenyl-acetylene.-(a) Solvent xylene. The betaine (3) (0.111 g, $\left.5 \times 10^{-4} \mathrm{~mol}\right)$, phenylacetylene ( $0.102 \mathrm{~g}, 0.001 \mathrm{~mol}$ ), and xylene ( 10 ml ) were heated under reflux $\left(150^{\circ} \mathrm{C}\right)$ for 12 h . Solvent was removed under vacuum and the residue was separated on preparative t.l.c. (Kieselgel PF 254). Elution with $\mathrm{CHCl}_{3}$ gave 2,4-diphenyl-2,3-benzodiazocin-1 $(2 \mathrm{H})$-one (12) ( $0.129 \mathrm{~g}, 75 \%$ ) as needles, m.p. $145-146^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 81.1; H, 5.0; N, 8.6. $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 81.5 ; \mathrm{H}, 5.0 ; \mathrm{N}, 8.6 \%)$; $\nu_{\max .}$ (Nujol) 1650 $\mathrm{cm}^{-1}$ (amide $\left.\mathrm{C}=\mathrm{O}\right) ; \lambda_{\max }(\mathrm{EtOH}) 300\left(\varepsilon 3.6 \times 10^{3}\right), 228$ $\left(5.6 \times 10^{4}\right)$, and $215 \mathrm{~nm}\left(6.6 \times 10^{4}\right)$; $\delta\left(\mathrm{CDCl}_{3}\right) 7.80-$ $7.0\left(1 \mathrm{H}, \mathrm{m}\right.$, aromatic), $6.60\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-5, J_{5,6} 11 \mathrm{~Hz}\right)$; $\delta\left(\mathrm{CDCl}_{3}\right)$ [with $5 \mathrm{mg} \operatorname{Pr}(\mathrm{fod})_{3}$ to 15 mg substrate] $7.80-$ $7.20\left(11 \mathrm{H}, \mathrm{m}\right.$, aromatic), $7.15\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-6, J_{5,6} 11 \mathrm{~Hz}\right.$ ), 5.96 ( $1 \mathrm{H}, \mathrm{d}, \mathrm{H}-5$ ), 3.81 ( $2 \mathrm{H}, \mathrm{m}, N$-phenyl ortho-protons), and $3.22(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10) ; m / e 324$. Further elution gave 3,4-dihydro-3,10-diphenyl-2,4-ethenophthalazin-1 $(2 \mathrm{H})$-one (6) ( $0.017 \mathrm{~g}, 10 \%$ ) as yellow needles, m.p. $220^{\circ} \mathrm{C}$ (from EtOH ) (Found: C, 81.3; H, 5.0; N, 8.6. $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$ requires C , $81.5 ; \mathrm{H}, 5.0 ; \mathrm{N}, 8.6 \%) ; \nu_{\max }(\mathrm{Nujol}) 1710 \mathrm{~cm}^{-1}(\alpha, \beta-$ unsaturated $\mathrm{C}=\mathrm{O})$; $\lambda_{\text {max }}(\mathrm{EtOH}) 245\left(\varepsilon 4.8 \times 10^{4}\right)$ and $207 \mathrm{~nm}\left(5.2 \times 10^{4}\right) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.2-8.0(14 \mathrm{H}, \mathrm{m}$, aromatic $)$,
${ }_{11}$ A. Padwa, P. Sackman, E. Shefter, and E. Vega, J.C.S. Chem. Comm., 1972, 680 .
$6.02\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-9, J_{4,9} 9 \mathrm{~Hz}\right)$, and $4.74(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-4)$; $m / e$ 324.
(b) Solvent o-dichlorobenzene. The betaine (3) $(0.888 \mathrm{~g}$, $0.004 \mathrm{~mol})$ and phenylacetylene ( $0.410 \mathrm{mg}, 0.004 \mathrm{~mol}$ ) in $o$-dichlorobenzene were heated under reflux for 12 h . Solvent was removed under vacuum and the residue was separated on preparative t.l.c. Elution with chloroform gave compound (6) ( $0.300 \mathrm{~g}, \mathbf{2 3 . 0} \%$ ). Further elution gave a second isomer 3,4-dihydro-3,9-diphenyl-2,4-ethenophthal-azin- $1(2 \mathrm{H})$-one (7) ( $0.10 \mathrm{~g}, 7.0 \%$ ) as yellow needles, m.p. $195-196{ }^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 81.7; H, 5.2; N, 8.8. $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 81.0 ; \mathrm{H}, 4.9 ; \mathrm{N}, 8.6 \%$ ); $\nu_{\text {max. }}$ (Nujol) 1715 (amide $\mathrm{C}=\mathrm{O}$ ) and $1600 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$ ); $\delta\left(\mathrm{CDCl}_{3}\right) 8.0-6.9(14 \mathrm{H}, \mathrm{m}$, aromatic), $6.75(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-10)$, and $5.70(\mathrm{l} H, \mathrm{~s}, \mathrm{H}-4) ; m / e$ 324. A third compound $(0.10 \mathrm{~g}, 7 \%)$ was isolated as yellow needles, m.p. $90-91^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 74.8; H, 5.4; N, 7.8. Calc. for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 73.7 ; \mathrm{H}, 5.0 ; \mathrm{N}, 7.8 \%$ ) ; $\nu_{\text {max. }}$ (Nujol) $1710 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CDCl}_{3}\right) 7.1-8.0(\mathrm{~m})$ and $5.3(1 \mathrm{H}, \mathrm{s}) ; m / e$ 340.

Dimethyl 1,2-Dihydro-1-oxo-2-phenyl-2,3-benzodiazo-cine-4,5-dicarboxylate (9).-1-Oxido-3-phenylphthalazinium (3) $(0.222 \mathrm{~g}, 0.001 \mathrm{~mol})$ and dimethyl acetylenedicarboxylate (DMAD) ( $0.217 \mathrm{~g}, 0.0015 \mathrm{~mol}$ ) were heated under reflux in $\mathrm{CHCl}_{3}(10 \mathrm{ml})$ for 12 h . Solvent was removed under vacuum and the residue was crystallised from EtOH to give the cycloadduct (9) ( $0.314 \mathrm{~g}, 85 \%$ ) as needles, m.p. $150^{\circ} \mathrm{C}$ (Found: C, 65.6; H, 4.5; N, 7.7\%); $\nu_{\text {max. }}$ (Nujol) 1730 (unsaturated ester $\mathrm{C}=\mathrm{O}$ ), 1650 (amide $\mathrm{C}=\mathrm{O}$ ), and $1600 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) ; \quad \lambda_{\max .}(\mathrm{EtOH}) 350\left(\varepsilon 1 \times 10^{3}\right), 285 \mathrm{sh}$ $\left(6.9 \times 10^{3}\right), 245\left(1.4 \times 10^{4}\right)$, and $210 \mathrm{~nm}\left(2.3 \times 10^{4}\right)$ : $\delta\left(\mathrm{CDCl}_{3}\right) 8.24(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 7.6-7.2(9 \mathrm{H}, \mathrm{m}$, aromatic), $3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, and $3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; m / e 364$.

Dimethyl 1,2,3,4-Tetrahydro-1-oxo-3-phenyl-2,4-ethenophthal-azine-9,10-dicarboxylate (8).-The betaine (3) ( 0.222 g , $0.001 \mathrm{~mol})$ and DMAD ( $0.217 \mathrm{~g}, 0.001 \mathrm{~mol}$ ) were heated under reflux in xylene ( 10 ml ) for 12 h . The solvent was removed under vacuum and the residue crystallised from EtOH to give the cycloadduct (8) ( $0.290 \mathrm{~g}, 80 \%$ ) as pale yellow needles, m.p. $176-177^{\circ} \mathrm{C}$ (Found: C, 65.2; H, 4.5; $\mathrm{N}, 7.7 . \quad \mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires $\mathrm{C}, 65.9 ; \mathrm{H}, 4.4 ; \mathrm{N}, 7.7 \%$ ); $\nu_{\max .}$ (Nujol) $175 \check{5}$ (saturated ester $\mathrm{C}=\mathrm{O}$ ), 1715 ( $\mathrm{C}=\mathrm{O}$ ), and $1600 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) ; \delta\left(\mathrm{CDCl}_{3}\right) 8.0-7.0(9 \mathrm{H}, \mathrm{m}$, aromatic), $6.26(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, and 3.80 ( $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$ ) ; $n / e 364$.

Dimethyl 1,3a,4,8b-Tetrahydro-4-oxo-1-phenylindeno-[1,2-c]pyrazole-3,3a-dicarboxylate (10).—The betaine (3) $(0.222 \mathrm{~g}, 0.001 \mathrm{~mol})$ and $\operatorname{DMAD}(0.217 \mathrm{~g}, 0.001 \mathrm{~mol})$ were heated under reflux in xylene ( 10 ml ) for 12 h . The solvent was removed under vacuum and the product was crystallised from EtOH to give the cycloadduct (10) ( 0.300 mg , $83 \%$ ) as yellow needles, m.p. $190^{\circ} \mathrm{C}$ (Found: C, 65.0; H, 4.9; $\mathrm{N}, 7.5$. $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires $\mathrm{C}, 65.9 ; \mathrm{H}, 4.4 ; \mathrm{N}$, $7.7 \%$ ); $\nu_{\max .}$ (Nujol) 1750 (saturated ester $\mathrm{C}=\mathrm{O}$ ), 1735 (unsaturated ester $\mathrm{C}=\mathrm{O}$ ), 1705 (ring $\mathrm{C}=\mathrm{O}$ ), and $1600 \mathrm{~cm}^{-1}$
$(\mathrm{C}=\mathrm{C}) ; \quad \lambda_{\max .}(\mathrm{EtOH}) 240\left(\varepsilon 1.2 \times 10^{4}\right), 290\left(5.7 \times 10^{3}\right)$, $243\left(2 \times 10^{4}\right)$, and $208 \mathrm{~nm}\left(3.2 \times 10^{4}\right) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.0-8.0$ ( $9 \mathrm{H}, \mathrm{m}$, aromatic), $6.28(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8 \mathrm{~b}), 3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$, and $3.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$; $m / e 364$.

Thermal Conversion of the Cycloadduct (8) into the Isomer (10).-The cycloadduct (8) ( $0.364 \mathrm{~g}, 0.001 \mathrm{~mol}$ ) was heated in an oil-bath at $170-180^{\circ} \mathrm{C}$ for 5 h . The product was crystallised from EtOH to yield the isomer (10) ( 0.350 g , $99 \%$ ), m.p. $190-191^{\circ} \mathrm{C}$ (mixed m.p. with authentic sample $190^{\circ} \mathrm{C}$ ).
Thermal Conversion of the Cycloadduct (9) into the Isomer ( 10 ).-The cycloadduct ( 9 ) ( $0.364 \mathrm{~g}, 0.001 \mathrm{~mol}$ ) was heated in an oil-bath at $190^{\circ} \mathrm{C}$ for 3 h . The product crystallised from EtOH to give the isomer ( 10 ) ( $0.350 \mathrm{~g}, 99 \%$ ), m.p. and mixed m.p. $190^{\circ} \mathrm{C}$.
6-Bromo-2,4-diphenyl-2,3-benzodiazocin-1(2H)-one (13).A solution of bromine ( $0.03 \mathrm{~g}, 2 \times 10^{-4} \mathrm{~mol}$ ) in $\mathrm{CHCl}_{3}$ ( 5 ml ) was added with stirring to a solution of compound (12) $\left(0.054 \mathrm{~g}, 1.7 \times 10^{-4} \mathrm{~mol}\right)$ in $\mathrm{CHCl}_{3}(10 \mathrm{ml})$. After 2 h the solvent was removed under vacuum. The residue was crystallised from EtOH to give the bromo-derivative (13) ( $10 \mathrm{mg}, 15.3 \%$ ) as needles, m.p. $184-185{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 64.7 ; \mathrm{H}, 3.8 ; \mathrm{N}, 7.2 ; \mathrm{Br}, 19.5 . \quad \mathrm{C}_{22} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{O}$ requires C, $65.5 ; \mathrm{H}, 3.7 ; \mathrm{N}, 7.0 ; \mathrm{Br}, 19.9 \%$ ); $\nu_{\max }$ (Nujol) 1645 (amide C=O) and $1460 \mathrm{~cm}^{-1}$; $\lambda_{\text {max. }}$ ( EtOH ) 280 sh $(\varepsilon 11.4 \times$ $\left.10^{3}\right), 247 \mathrm{sh}\left(21.4 \times 10^{3}\right)$, and $207 \mathrm{~nm}\left(36 \times 10^{3}\right) ; \delta\left(\mathrm{CDCl}_{3}\right)$ $7.3-8(\mathrm{~m})$; $m / e 444$.

Dimethyl 1,2,3,3a,4,8b-Hexahydro-4-oxo-1-phenylindeno-[1,2-c]pyrazole-3,3a-dicarboxylate (11).-Compound (10) ( $0.121 \mathrm{~g}, 3.3 \times 10^{-4} \mathrm{~mol}$ ) in ethyl acetate ( 100 mll ) was hydrogenated over $\mathrm{Pd}-\mathrm{C}(10 \%)$. The mixture was filtered and the solvent removed under vacuum. The residue was crystallised from EtOH to give the product (11) ( 0.04 g , $33.3 \%$ ) as light green needles, m.p. $165-166{ }^{\circ} \mathrm{C}$ (Found: C, $65.6 ; \mathrm{H}, 5.0 ; \mathrm{N}, 7.5 . \quad \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires C , 65.6 ; $\mathrm{H}, 5.0 ; \mathrm{N}, 7.7 \%$ ); $\nu_{\text {max }}$ (Nujol) $3520(\mathrm{~N}-\mathrm{H}), 1750$ (saturated ester $\mathrm{C}=\mathrm{O}$ ), 1700 (ketone, $\mathrm{C}=\mathrm{O}$ ), and $1600 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{C}) ; \quad \lambda_{\text {max. }}(\mathrm{EtOH}) 345\left(\varepsilon 4.1 \times 10^{3}\right), 300 \mathrm{sh}\left(1.1 \times 10^{3}\right)$, $237\left(2.3 \times 10^{3}\right)$, and $207 \mathrm{~nm}\left(5.9 \times 10^{3}\right) ; \delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]$ $7.25-7.5(9 \mathrm{H}, \mathrm{m}$, aromatic), $6.32(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8 \mathrm{~b}), 6.0(1 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{H}-3, J_{\mathrm{NH}, \mathrm{H}-3} 6 \mathrm{~Hz}\right), 3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, and $3.70(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right) ; \delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}-\mathrm{D}_{2} \mathrm{O}\right] 6.32(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8 \mathrm{~b}), 5.86(1 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-3), 3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, and $3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.

3a,8b-Dihydro-1,3-diphenylindeno[1,2-c]pyrazol-4(1H)one (14).-Sublimation of compound (12) at $200^{\circ} \mathrm{C}$ and 0.1 mmHg produced the isomer (14) as greenish-yellow crystals, m.p. $228{ }^{\circ} \mathrm{C}$.

We thank the S.R.C. for a postdoctoral Fellowship (to N. D.), and the British Council for a Scholarship (to M. R.) ; also Dr. E. Lunt (May and Baker, Dagenham) for discussions. We acknowledge the substantial help given to us by Drs. R. L. Harlow and S. H. Simonsen in the X-ray determination of structures (12) and (14).
[5/1834 Received, 23rd September, 1975]


[^0]:    8 R. M. Acheson, M. W. Foxton, and G. R. Miller, J. Chem. Soc., 1965, 3200.

[^1]:    9 N. Dennis, A. R. Katritzky, E. Lunt, M. Ramaiah, R. L. Harlow, and S. H. Simonsen, Tetrahedron Letters, 1976, 1569.
    ${ }_{10}$ R. L. Harlow and S. H. Simonsen, unpublished results.

